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We demonstrate a two-dimensional atom interferometer in a harmonic magnetic waveguide using a Bose-
Einstein condensate. Such an interferometer could measure rotation using the Sagnac effect. Compared to free
space interferometers, larger interactions times and enclosed areas can in principle be achieved, since the atoms
are not in free fall. In this implementation, we induce the atoms to oscillate along one direction by displacing
the trap center. We then split and recombine the atoms along an orthogonal direction using an off-resonant
optical standing wave. We enclose a maximum effective area of 0.1 mm2 limited by fluctuations in the initial
velocity and by the coherence time of the interferometer. We argue that this arrangement is scalable to enclose
larger areas by increasing the coherence time and then making repeated loops.
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Atom interferometry has proven useful for a variety of
precision measurements notably including rotations �1–3�.
Through the Sagnac effect �4�, an interferometer that en-
closes area A on a platform rotating at rate � develops a
phase proportional to the product of A and �. Greater sensi-
tivity is therefore obtained by increasing the area. The best
atom gyroscope at present uses a thermal atomic beam in a
2-m-long Mach-Zehner configuration with an enclosed area
of 30 mm2 �3�. It exhibits impressive performance, but the
considerable length of the device limits potential applica-
tions.

A possible resolution to this problem is guided-wave atom
interferometry, in which the atoms are continuously confined
by optical or magnetic fields. The guiding fields can direct
the atoms along more compact trajectories than possible in
free space. For instance, an enclosed area comparable to the
above could be obtained by passing the atoms around a cir-
cular loop of only 6 mm diameter. In addition, the confining
potential supports the atoms against gravity permitting
longer interaction times. A significant effort is underway to
develop such devices �5–10�, but to date, only relatively
small enclosed areas have been demonstrated. We present
here a design that we argue has good potential to scale to
large area and take advantage of the benefits of the guided-
wave approach.

The design is based on a linear guided-wave interferom-
eter �11�. A Bose-Einstein condensate is produced in a har-
monic trap. One axis �y� of the trap is weakly confining, and
an off-resonant standing-wave laser passing along that axis is
used to split, manipulate, and recombine the atomic wave
packets. The trajectory is shown in Fig. 1�a�. Note that a
reciprocal trajectory is used, in which both packets traverse
identical paths. This causes static perturbations from the con-
fining potential to largely cancel �12�. To generate an en-
closed area, we operate the interferometer with atoms that
are also moving in the transverse �x� direction. In that direc-
tion, the atoms undergo harmonic oscillation. The laser
pulses are timed so that a turning point in x occurs at the
midpoint of the interferometer as shown in Fig. 1�b�. The
trajectory in the xy plane is shown in Fig. 1�c� and is clearly
both area enclosing and reciprocal.

Our technique is similar to that of Wu et al. �8�, but there
the transverse motion is achieved by translating the guide

itself rather than by excitation within the guide. The primary
difference here is our use of a Bose-Einstein condensate,
compared to laser-cooled atoms. This makes the moving
guide approach challenging, since the guide would need to
be tightly confining to ensure the atoms followed it adiabati-
cally. For a condensate, tight confinement increases interac-
tion effects that can spoil the interference.

Using a condensate does, however, allow a higher degree
of control. When applied to a thermal sample, the standing-
wave laser pulses produce many different interfering paths
with differing enclosed areas. These parallel loops produce a
complicated output state from which a Sagnac signal must be
reconstructed. Wu et al. demonstrate how this can be
achieved �see also �13��, but it is not yet clear whether their
methods can be extended to the accuracy needed for preci-
sion measurements. In addition, the large range of initial
atomic velocities makes the interferometer imperfectly recip-
rocal and thus more sensitive to errors. In contrast, the low
momentum spread of a condensate permits our interferom-
eter to be operated with a single reciprocal trajectory to a
high degree of accuracy.
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FIG. 1. ��a�–�c�� Sagnac interferometer trajectory. �a� Motion
along the guide axis �y� vs time. �b� Motion in the direction �x�
transverse to the guide. �c� Trajectory in the xy plane. Gray bars
indicate the times and positions of interactions with a standing-
wave laser beam that is parallel to the y axis. Solid curves show the
packet trajectories and dashed segments show the possible output
states. �d� Trajectory obtained when the packets begin at a turning
point in x allowing for multiple loops. All figures are shown with a
consistent scale.
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The linear interferometer on which our method is based
has been described previously �11�. To start, a Bose-Einstein
condensate of N=3�104 87Rb atoms is prepared in the F
=2, mF=2 hyperfine state and held in a harmonic time-
orbiting potential �TOP� trap. Confinement is intentionally
weak, with atom oscillation frequencies ��x ,�y ,�z��2�
� �6.0,1.1,3.3� Hz. Weak confinement in combination with
support against gravity is achieved by modulating the mag-
netic quadrupole field in phase with the rotating bias field of
the TOP trap �14�.

We excite the transverse motion by suddenly changing the
phase difference between the bias and quadrupole fields,
which shifts the trap minimum along x. The displacement is
not purely transverse, so in general oscillations are induced
in all three directions. However, at a suitable time later the
phase is switched back causing the x oscillation to be en-
hanced while the y oscillation is reduced. Typical values of
the oscillation amplitudes are Cx=1 mm and residual ampli-
tudes of 100 �m in the other directions.

The motion along y is controlled by a standing-wave laser
at a wavelength �=780.1 nm, 70 GHz blue of the
5S1/2↔5P3/2 laser-cooling transition. The laser couples
states of momentum py =2n�k where k=2� /� and n is an
integer. The corresponding velocity v0=2�k /m is 1.2 cm/s.
In particular, the interferometer uses the beam-splitting tran-
sition �0�↔ ��2�k�+ �−2�k�� /�2 and the reflection transition
�2�k�↔ �−2�k�, both of which can be implemented with high
precision �15,16�. We use a 1 cm diameter laser beam to
encompass the range of transverse locations needed for the
pulses.

To create the interferometer, a splitting pulse is applied at
time t=0, reflections at times t=	 and 3	, and a splitting
pulse again at t=4	. In general, the output consists of
three momentum states, py =0, 
2�k. The populations Ni of
the states depend on the interferometer phase �, with
N0 /N= �1+V cos �� /2 for visibility V. We vary � in a con-
trolled way by adjusting the frequency of the coupling laser
before the final splitting operation, which has the effect of
shifting the standing wave along y. This permits an interfer-
ence curve N0��� to be mapped out and the visibility deter-
mined. With no transverse excitation, interference is ob-
served for total times 4	 up to 72 ms. This is limited by
phase gradients imposed by the nonuniform potential along
the guide axis �12�. In the experiments described here, we
operate with 	=5 and 10 ms, for which the linear interfer-
ometer has a visibility of about 0.9.

The two-dimensional interferometer of Fig. 1�c� encloses
area

A �
4v0Cx

�x
�2 sin �x	 − sin 2�x	� , �1�

valid for �y	�1. The effective area for a Sagnac interferom-
eter is twice this, since both packets complete a full circuit of
the loop. We implemented the interferometer with oscillation
amplitudes Cx=0.4, 0.8, and 1.3 mm. Results for the visibil-
ity are shown in Fig. 2. The enclosed areas are too small here
to observe the Sagnac effect from the Earth’s rotation.

The data suggest that the interferometer coherence decays

as the initial transverse velocity vx increases, with vx calcu-
lated as Cx�x sin �x	. The decay is due to phase noise. We
observe that the rms variation in N0 /N is about the same
throughout and corresponds to an underlying visibility of
about 0.5. This suggests that the loss of visibility comes from
a noise effect related to vx.

Ideally, the interferometer operation is independent of vx,
since the potential is separable. If the motion in x were iden-
tical for both packets, then any phase accumulation due to
that motion would be identical and thus cancel. However,
there are several ways that motion in x can couple to the
interferometer direction y. First, as noted above, driving the
x oscillation does produce excitation in y of about 0.6 mm/s
amplitude. We minimized this effect by selecting the starting
time for the experiment such that the motion along y was
near an extremum. We estimate that the resulting vy was
below 0.1 mm/s, which is too small to explain the observed
effects.

More seriously, the standing-wave laser is not perfectly
aligned to the principal axis of the trap. Observations of tra-
jectories in the trap indicate alignment errors less than a few
degrees in the horizontal �x� direction and a larger error of
about 6° in the vertical �z� direction. Atomic motion along x
and z therefore does produce a component along the interfer-
ometer direction of 0.2–1 mm/s depending on the magnitude
of vx. The beam misalignment is difficult to correct in the
current configuration due to limited optical access and the
large diameter of the standing-wave beam.

An initial velocity parallel to the standing wave can mani-
fest itself in two ways. First, the beam-splitting and reflection
operations are velocity dependent �16�. Errors in the opera-
tions can leave atoms behind in unwanted momenta, where
they can affect the output phase. For instance, if the beam-
splitting operation leaves a residual wave packet at p=0,
these atoms will continue through the interferometer and act
as an additional input state to the final recombination pulse
and thus change the output in a phase sensitive way. Since
the interference signal depends on the square root of the
number of atoms in the stray packet, even small errors in the
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FIG. 2. Visibility of interferometer as a function of the speed of
the atoms at the time of the initial beam-splitting operation. Open
circles and filled circles represent 	 equal 5 ms and 10 ms, respec-
tively. The labels denote the area enclosed in mm2.
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standing-wave operations can result in significant phase
shifts. A characteristic of this type of error is a phase-
dependent asymmetry between the +2�k and −2�k popula-
tions in the interferometer output, which we do observe at
larger vx.

Even atoms in the correct states can acquire phase noise
because a nonzero initial velocity makes the two interfering
trajectories nonreciprocal. This effect can be calculated from
the classical action. In a harmonic potential, the action is


 =
S

�
=

m

2�
	 dt��v�2 − �q�2� , �2�

where v is the velocity, x is the position, and qi
�ixi. The
integral in Eq. �2� can be carried out for our trajectory yield-
ing a phase


 =
mv0

�
b̂ · A , �3�

where b̂ is the unit vector pointing in the direction of the
Bragg beam and the vector A is defined by Ai=Cif��i	� for

f��	� = cos�6�	� − 2 cos�5�	� + 2 cos�3�	� − cos�2�	� .

�4�

If �	�1, f →8��	�4.
For example, using a horizontal alignment error of 1°, a

vertical error of 6°, an amplitude Cx=1 mm with
Cy =Cz=0, and 	=10 ms, we find 
=12 rad. Directly, this
represents a significant error for a potential rotation measure-
ment, but we have not attempted to measure the absolute
phase at this time. If, in addition, Cx fluctuates with a stan-
dard deviation �= pCx, the visibility will be reduced by a
factor exp�−p2
2 /2�. We observe fluctuations in the x am-
plitude of about 5%, corresponding to a visibility decrease of
60%, in qualitative agreement with the data above.

On the other hand, values of 
 obtained with 	=5 ms are
generally too small to explain the observed performance. The
additional noise may derive from the degraded standing-
wave operation described above, since that effect is indepen-
dent of 	 apart from the velocity’s own dependence on 	.
Modeling suggests that velocity errors on the order of those
observed would be sufficient �16�.

We also estimate the effect of a small anharmonic term in
the guide potential, m�x3 /3. Again, the resulting phase is
calculated using the action, now with the approximate trajec-
tory for an anharmonic oscillator �17�. To leading order, we
find


� �
28

3

mv0

�
��	2��

i

biCi
2. �5�

Numerical modeling of the trap current conductors
suggests ��103 m−1 s−2. With Cx=1 mm, this yields

��0.25 rad. Fluctuations on this value will be too small to
contribute significantly to the observed noise, but the effect
is not negligible.

In principle, it is possible to model all of these noise
effects together and attempt to reproduce the behavior seen
in Fig. 2. We pursued such an approach, but found the results

to be very sensitive to the motional noise amplitudes and the
alignment angle errors. Our experimental knowledge of these
parameters is insufficient to constrain the model enough to
be useful, in that the experimental behavior could be repro-
duced for many different sets of error parameters. The model
does, however, further support the conclusion that the
mechanisms discussed are sufficient to explain the experi-
mental performance.

Despite the fact that the performance is limited, we be-
lieve our approach has promise for creating a compact
guided-wave gyroscope. A significant advantage is that the
technique is continuously scalable from zero area, a feature
that will continue to make troubleshooting easier as the area
increases. Additionally, the technique is in principle capable
of enclosing larger areas by making repeated loops. If it can
be operated with 	=� / �2�x��40 ms, then the split pulse
itself occurs at a turning point in x. The trajectory then re-
sembles a vesica piscis as seen in Fig. 1�d�. The area in this
limit is A=8Cxv0 /�x, and since the trajectory is closed, the
atoms can complete multiple orbits. Furthermore, in this con-
figuration the x component of the velocity is near zero at the
time of the beam-splitting pulses, which would significantly
reduce the sensitivity to beam angle described above.

We are currently installing a magnetic trap apparatus with
a more uniform potential along y to reduce the problem of
longitudinal decoherence. The apparatus will also provide
better optical access allowing the beam alignment errors to
be more easily remedied. With these improvements, we hope
to increase the usable interferometer duration and reach
	=� /2�x. We have previously observed interference at 1 s
measurement times �12�, and if that can be attained here, up
to five orbits through the trap would be achievable. This
would enclose an effective area of 26 mm2 for Cx=1 mm,
comparable to present free-atom gyroscopes, but taking up
much less space. It might also be possible to apply the ideas
of �18� to this geometry to increase the sensitivity even
further.

Our method is similar to an approach using atoms con-
fined in a cylindrically symmetric harmonic trap �19�. In that
case, reflection operations are not necessary, since the poten-
tial itself guides the packets in a circular orbit. After a com-
plete orbit, both the x and y terms in Eq. �3� vanish leaving


 =
2mv0

�
Azbz sin2�2��z

�x

 �6�

with Az and bz as in Eq. �3�. This phase will itself vanish if
�z is equal to an integer multiple of �x /2. We are presently
designing a trap to test this symmetric approach as well.

In either geometry, stray interference with erroneous paths
may still be problematic, since the beam-splitter operations
will never be perfect. The dominant error, from atoms left
with p=0 after the split, could be resolved by removing
those atoms from the trap during the interferometer. In the
linear trap, this would require a focused laser beam, but in
the cylindrical trap, an rf-evaporation pulse tuned to the bot-
tom of the trap potential would suffice.

We compare these results with other guided-atom gyro-
scope efforts. Several experiments have demonstrated
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ring-shaped guides �5–7,10�, but none as yet have exhibited
interference. Besides the practical problems in creating these
potentials such as scalability, there is a more fundamental
problem. A ring-guide system will generally exhibit a phase
linearly proportional to the initial velocity of the atoms, since
tangential motion of atoms around the ring is equivalent to a
rotational and thus subject to the Sagnac effect. This effect is
much larger than that of Eq. �3�: for an equivalent area of
0.05 mm2, a ring interferometer would exhibit phase noise
of 1 rad for a velocity fluctuation of only 1 �m /s. In either
of the geometries discussed here, this phase largely cancels
due to reflection by either the standing wave or the harmonic
potential.

The comparable experiment of �8� avoids this problem,
and the use of thermal atoms provides the opportunity to
average over unwanted interfering paths. However, the inef-
ficiency of the beam-splitting and reflection operations will
make it difficult to achieve trajectories with multiple orbits.
Additionally, thermal expansion of the sample disrupts the
reciprocality of the trajectories as atoms in the sample
move relative to the trap center during the measurement. The

use of condensate atoms may thus offer several long-term
advantages.

We have demonstrated how a linear interferometer of ul-
tracold atoms in a weak guiding potential can be extended to
perform gyroscopic measurements. This gyroscope has an
effective enclosed area of 0.05 mm2 but shows promise of
being scalable to larger area. Current performance is limited
by initial velocity fluctuations, but stabilization of the
oscillation-inducing method, improvements in optical access,
and optimization of the trap geometry should provide large
gains to both accuracy and precision. We look forward to
using this or a similar device for sensitive rotation measure-
ments, but the difficulties discussed here illustrate the chal-
lenges that remain to be solved.
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