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We propose that micrometer-sized atom traps can be created using the optical dipole force between the ends
of two single-mode optical fibers carrying counterpropagating light beams of two different wavelengths from
both fibers. The traps have a simple design that is feasible to implement with commercially available products.
They can be used as a flexible “atom tweezer” to manipulate atoms in free space without the need for
traditional focused laser beams. A particularly interesting feature is the formation of a static ring-shaped trap
for properly chosen beam parameters. Furthermore, this ring can be split into two longitudinally adjacent rings.
Microscopic ring traps such as this could have important applications in atom interferometry and fundamental
investigations of Bose-Einstein condensates.
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I. INTRODUCTION

The cooling and trapping of atoms and the attainment of
Bose-Einstein condensation �BEC� �1–3� have provided nu-
merous new tools for studying the behavior of quantum sys-
tems in different dimensions, as well as possible sources for
high-precision atomic quantum sensing and information pro-
cessing �4�. Most recently, ultracold atoms in two-
dimensional closed ring-shaped traps have attracted much
research interest. They have potential applications in rota-
tional inertial sensing, quantum computing, and studies of
exotic BEC excitations �5–7�. A plethora of techniques to
produce ring traps have been proposed and implemented,
using magnetic �8–11� and optical �12� methods. The method
proposed here is in comparison quite simple, and can be used
to produce relatively small rings with radii of a few mi-
crometers. Microscopic traps are of interest because their
size is of the same order as the typical de Broglie wavelength
of a Bose-Einstein condensate, making coherence effects im-
portant. Also, small rings can be expected to exhibit stronger
atomic interactions. Le Kien et al. �13� have suggested that a
microscopic cylindrical trap could be created using an eva-
nescent wave surrounding a subwavelength-diameter optical
fiber. However, holding cold atoms very close to a room-
temperature surface can lead to loss �14�. Our method avoids
this problem while also providing true three-dimensional
confinement.

We have previously reported on our work investigating
macroscopic static ring trapping structures using rotating
magnetic fields �15�. In the present paper we propose several
simple and controllable micrometer-sized traps for ultracold
rubidium atoms using a conventional single-mode optical fi-
ber �SMF� and a two-color light field dipole potential. Our
proposal does not rely on evanescent fields but is similar to
traditional optical tweezers where a red-detuned Gaussian
beam is focused to form a waist in free space. The basic idea

is illustrated in Fig. 1. Two optical fibers are arranged end to
end inside a vacuum chamber, with a small �100 �m� gap in
between. Each fiber carries both far-red- and far-blue-
detuned light. The blue light generates a repulsive potential
that is strongest near the axis of the fibers, while the red light
provides an attractive potential that extends to larger radii.
As Fig. 2 illustrates, the combination provides a ring-shaped
trap at the midpoint between the two fibers. The ring trap
parameters, including size, trap depth, and frequencies, can
be easily adjusted by changing laser powers. Additionally,
we will show that the ring trap can be split in the longitudi-
nal �axial� direction �see Fig. 1�b�� so that interference be-
tween two ring BECs can be studied. A fiber-based microring
trap can also be easily integrated into the advancing field of
atom chips for portable and miniature-size atom-wave de-
vices �16–18�.

In Sec. II we describe the transverse and longitudinal
character of the two-color optical potential and analyze the
fields in order to obtain physical insight into their use as
traps. In Sec. III we present results for two trapping scenarios
that rely on the relative size of the mode field diameters
�MFDs� for the two light colors. We numerically obtain trap-
ping parameters such as trap depth, shapes, coherence time,
and capture lifetime. Section IV examines the robustness of
the traps with respect to misalignment. We present conclu-
sions in Sec. V.
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FIG. 1. �Color online� General experimental setup of fiber ring
trap. �a� A single ring trap appears at the midpoint between the two
fiber ends. �b� Increasing the separation causes the ring trap to split
into two identical rings.
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II. FIBER TRAP THEORY: MATHEMATICAL ANALYSIS

Light exiting the output end of a SMF is Gaussian shaped,
but the waist is located right at the output surface of the fiber
end. Forming an atomic trap there is not possible since atoms
would interact with the surface and either stick to it or be-
come heated and thereby escape the trap. We show that the
presence of an identically prepared beam from the counter-
propagating direction, however, moves the minimum in the
longitudinal direction away from the fiber end surface. To
avoid standing waves, and hence the production of an optical
lattice, the counterpropagating beam can have a slightly dif-
ferent frequency. This can readily be achieved using an
acousto-optic modulator. The geometry is shown schemati-
cally in Fig. 1

A light field with components oscillating at �i produces a
conservative optical dipole potential given by �19�

U = −
1

2�
i

���i��E��i��2, �1�

where E��i� is the electric field component and ���i� is the
real part of the atomic polarizability at that frequency. This
can be derived from a semiclassical Lorentz model of the
atom, or from the full density matrix approach.

In alkali-metal atoms the first excited electronic configu-
ration gives rise to two levels split by the fine-structure in-
terval. This splitting is small compared to our proposed laser
detunings, so the contribution to the total atomic polarizabil-
ity from both these “D1” and “D2” transitions must be in-
cluded. This yields an approximate expression for the optical
potential of �20�

U =
3�c2

2�i
3 � �D1

3�D1
+

2�D2

3�D2
�I��,z� , �2�

where �i is the linewidth for transition i, �i is the detuning
from transition i, and I�� ,z� is the optical intensity. For a
Gaussian beam carrying power P in free space the intensity
I�� ,z� is a function of the longitudinal distance z and radial
position �= �x2+y2�1/2. It is given by �21�

I��,z� = I0� W0

W�z�
�2

exp�−
2�2

W2�z�
� , �3�

where z0= ��W0
2� /	 is the Rayleigh length, W0 is the waist

radius, W�z�=W0�1+ �z /z0�2�1/2, and I0=2P / ��W0
2�. For light

exiting a SMF the position of the beam waist is at the end
surface and W0 is given by the MFD of the fiber.

To get insight into the trapping potentials and their prop-
erties, we first perform an analytical treatment for a single-
frequency trap. Many of the features for this case are rel-
evant to the two-color scenario. For a single red-detuned
field at the wavelength of 	1, the global minimum of U1 is,
of course, always on the axis so we may set �=0 in Eq. �3�.
The on-axis potential for both fibers, one at z=d /2 and the
other at z=−d /2, is

U1�� = 0,z� = −
P1a1

W01
2 � z01

2

z01
2 + �z − d/2�2 +

z01
2

z01
2 + �z + d/2�2� ,

�4�

where a1= ��2�1� / ��c
0��. Here W01 and z01 are, respectively,
the waist radius and Rayleigh length for the red beam.

Extrema in the potential will exist wherever dU /dz=0.
This condition yields �z−d /2� / �z01

2 + �z+d /2�2�2

+ �z+d /2� / �z01
2 + �z−d /2�2�2=0. One root by inspection

is z=0, halfway between the two fiber ends. To have a trap,
of course, the extremum must be a minimum. Evaluation
of the second derivative shows that this occurs for
d�dcrit=2z01/	3. Insight into this condition, as well as
knowledge of the other roots, can be obtained by considering
the following graphical argument.

Both terms in Eq. �4� are Lorentzians, one due to the fiber
end located at z=d /2 and the other at z=−d /2. We wish to
vary d and investigate the roots of the first-derivative condi-
tion above. The derivatives of each term are dispersion-
shaped curves. Graphical analysis, as in Fig. 3, shows that, as
long as the displaced curve has its maximum position below
that of the minimum of the undisplaced dispersion curve, the
extremum at z=0 will be a minimum and a trap will exist

µ

µ

FIG. 2. �Color online� Optical potentials plotted along a line
perpendicular to the fiber axes. The red-detuned light �shown in red�
provides an attractive potential, while the blue-detuned light �in
blue� is repulsive. The sum �black� gives a ring-shaped potential
with an off-axis minimum.

FIG. 3. Dipole force derived from Eq. �4�. The equilibrium at
z=0 is stable �i.e., a trap exists� for values of d�1.15z01. For values
greater than this critical value, such as d=1.23z01, the equilibrium at
z=0 becomes unstable but two additional stable equilibria exist.
That is, the trap splits into two.
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there. As d is increased past the critical value, two other roots
of the derivative condition become distinct from z=0 and the
trap splits in two. The midpoint z=0 becomes a local maxi-
mum and the two split-off roots are minima.

The following can, therefore, be concluded. As the fiber
end separation increases from d=0, a trap will exist at z=0.
When the fiber separation reaches the critical value dcrit, the
trap splits in two and each minimum moves toward the near-
est fiber end. Algebraic evaluation gives the separation be-
tween the two minima in this case as

�z = 
4z01Wd1

W01
�d −

z01Wd1

W01
��1/2

, �5�

where Wd1=W1�d /2�=W01�1+d2 / �2z01�2�1/2 is the value of
the beam radius at the midpoint between the fiber ends. The
depth of the trap is given by the value of the potential at the
minimum,

Umin = �−
2a1P1

Wd1
2 for d � dcrit,

−
a1P1�2z01Wd1 + dW01�

dW01
3 for d 
 dcrit.
 �6�

In the case of the split trap, the barrier height between the
two minima is easily evaluated as U�0�−Umin.

The above one color analysis yields an oblate trap. A ring
trap is obtained by using two different frequencies �i, one
tuned red of the principal atomic resonance and the other
tuned blue. In general, the mode diameter of an optical fiber
decreases with increasing wavelength, so if �2 corresponds
to the blue-detuned light, the Gaussian beam waists will sat-
isfy W01
W02. Furthermore, shorter-wavelength light dif-
fracts at a smaller angle, so the blue light will typically be
confined more closely to the axis for all z. The longitudinal
behavior is qualitatively identical to that of the single-
frequency trap discussed above. We therefore limit the analy-
sis to the radial direction alone, and in particular assume that
the fibers are close enough to create a single trap at z=0. As
a function of �, the total potential is

U��,z = 0� = −
2a1P1

Wd1
2 e−2�2/Wd1

2
+

2a2P2

Wd2
2 e−2�2/Wd2

2
, �7�

where P2, a2, and Wd2 are defined as above, but for the
blue-detuned light.

We obtain extrema at �=0 and at values of � that satisfy

a1P1Wd2
4

a2P2Wd1
4 = exp
2�2� 1

Wd1
2 −

1

Wd2
2 �� . �8�

From the second derivative we conclude that the root at
�=0 is a single minimum if a1P1 /Wd1

4 
a2P2 /Wd2
4 . Under

this circumstance, however, Eq. �8� has no solution since
Wd1
Wd2. This means that a single nonring trap would exist
in the center between the fiber ends. This is obvious since in
the limit of vanishingly small P2 �blue light� the trap is es-
sentially a single-color, oblate trap. As P2 is increased, the
inequality above is violated and the position �=0 becomes a
local maximum. But then Eq. �8� can be solved to give a
minimum at

�m = 
 Wd1
2 Wd2

2

2�Wd1
2 − Wd2

2 �
ln�a2P2Wd1

4

a1P1Wd2
4 ��1/2

, �9�

thus producing a ring-shaped trap. In the limit of very large
P2, however, �m→�. This is also reasonable considering that
a single-wavelength, blue-detuned field of this kind cannot
form a trap.

The critical ratio of red to blue power at which the ring
trap forms is

P1

P2
=

a2Wd1
4

a1Wd2
4 =

a2W01
4

a1W02
4 �4 + d2/z01

2

4 + d2/z02
2 �2

. �10�

For ratios larger than this an oblate trap exists at �=0 and for
smaller values there is a ring trap of radius given by Eq. �9�.
The depth of the ring trap is easily calculated numerically.

III. FIBER TRAP THEORY: NUMERICAL ANALYSIS

Here we present numerical results showing how the trap
parameters—radius, depth, etc.—vary with power and fiber
separation. We consider trapping Rb atoms, using light at
	1=1064 nm and 	2=647 nm, obtainable from an yttrium
aluminum garnet laser and an Ar-Xe ion laser, respectively.
The SM600 fiber from Fibercore Inc. is capable of transmit-
ting both these wavelengths in a single mode. The specified
MFD’s are W01=6.45 �m and W02=4.7 �m. We set
P1=95 mW and P2=55 mW.

In Fig. 4, we plot the total potential versus transverse and
longitudinal position emphasizing various features. The con-
tour plots of the optical potential in temperature units are
shown as a function of the radial and longitudinal coordi-
nates. In Fig. 4�a�, the fiber separation d is 100 �m, and a
global minimum is clearly present between the two fibers
located at z= ±d /2, and is in the shape of a ring of radius
about 4 �m. In Fig. 4�b�, the fiber separation is 160 �m and
two longitudinally separated ring minima are observed.
Transverse and longitudinal plots through the global minima
confirm this and indicate the depth and radius of the trap.
These are shown in Figs. 5�a� and 5�b�.

It is evident that the longitudinal variation through the
trap minimum is more shallow than that of the transverse
direction. The transverse depth is about 350 �K,
whereas along the longitudinal direction it is about 30 �K.
The longitudinal oscillation frequency near the minimum
is �z�2��100 Hz, while in the radial direction
�r�2��3.5 kHz.

The lifetime of atoms in the trap will be limited by spon-
taneous emission. The light scattering rate in general is given
by the Rayleigh formula

Rs =
1

6��0
2�c4�

i

�i
3�2��i�I��i� . �11�

Again taking only the contributions of the D1 and D2 lines,
the total scattering rate for both beams is calculated to be
1.2 s−1, giving a coherence time of 830 ms and a heating rate
of 0.21 �K/s.

It should be noted that at a distance of nearly 50 �m from
the fiber end the van der Waals, or Casimir-Polder, interac-
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tion between the atoms and the surface material is totally
negligible. This is not the case with the other microtraps
which rely on evanescent light surrounding a rectangular
waveguide etched on monolithic chips �22,23�.

The trap can be loaded by moving a BEC into it using any
number of techniques including waveguide technologies
�24,25�. The relatively shallow longitudinal depth of the trap
can be used to further evaporatively cool the BEC. This is
through contact with the fiber end surfaces. Such surface
evaporative cooling has been successfully used in BEC for-
mation on chips �14�.

Figure 6 shows separation of two the traps from the center
as a function of fiber separation distance d.

IV. TRAP ROBUSTNESS

Finally, we investigate the robustness of this trapping
scheme with respect to misalignments of the two fibers.
Traps relying on evanescent fields in channel waveguide
�22,23� suffer from degradation in performance due to im-
perfections in the guide manufacturing. This effect is exac-
erbated since the traps in that scheme are very close to the
waveguide surface. Burke et al. �23� show that scattering of
even 0.1% of one of the colors due to these imperfections
cuts the maximum trapping depth by 50%. In the scenario we
propose, the traps are far from surfaces and quite unaffected
by such concerns.

On the other hand, the numerical analysis we presented in
Sec. II assumed that the two fibers were perfectly collinear.
We can investigate the effects of lateral displacement of the
two fibers by introducing a misalignment � into Eq. �3�.

Figure 7 is a two-dimensional contour plot of the potential
under the misalignment effect of a lateral displacement
�=1 �m. At this displacement the overall quality of the trap
is intact. The ring is simply “canted” by 15°. Above 2 �m
displacement, the trap begins to suffer serious degradation
and leakage. Alignment to within 1 �m could be accom-
plished by launching light into one fiber and positioning the
other fiber to maximize transmission. With MFD’s on the
order of 4 �m, single-micrometer sensitivity with respect to
alignment is quite feasible. This is a much less stringent
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FIG. 4. Contour plot of potential as a function of z and x resulting in a ring trap for d= �a� 100 and �b� 160 �m. Each contour is
20 �K.
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FIG. 5. Longitudinal �a� and transverse �b� plots of the potential
of the ring trap for various d. In each case, the profile is taken
through the actual location of the trap minimum.
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FIG. 6. Distance of the trap minimum from the center �z=0� as
a function of d for the ring trap.
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requirement than with the channel waveguide traps men-
tioned earlier. Their surfaces must be free of imperfections to
a fraction of the optical wavelength.

V. CONCLUSIONS

We propose a technique for producing a ring-shaped mi-
crotrap at a comfortable distance from the end of a flexible
optical fiber. Moreover, the trap can be longitudinally split

into two separate rings. The ring configuration is a highly
sought-after trap shape for ultracold atoms since it can be
used to realize highly sensitive inertial sensors such as atom
gyroscopes and atom interferometers. The positional flexibil-
ity of the trap allows for atomic manipulation necessary in
experiments involving quantum entanglement, quantum co-
herence, and BEC transport, for example.

It is to be emphasized that the parameters we selected for
this trap—the two wavelengths, the optical powers at these
wavelengths, and the fiber—are all commercially available.
In the future, we plan to closely follow developments in
high-index fibers made from novel materials that allow a
larger range of wavelength difference in single-mode propa-
gation. Such flexibility would make it possible to vary the
ring size and depth in situ.
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